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ABSTRACT OF THE THESIS 

The Effect of Scan Settings on Identification of Tooth Socket Lamina 
Dura Surface: A CBCT Study 

 
by 
 

Erick Carlucci 

Master of Science in Orthodontics and Dentofacial Orthopedics 
Loma Linda University, September 2015 

Dr. Kitichai Rungcharassaeng, Chairperson 
 

Aim: Cone-beam computed tomography (CBCT) is becoming a common adjunct 

in orthodontic diagnosis and treatment, however several questions remain about the 

impact of surrounding anatomical structures and varying scan settings on the ability to 

delineate buccal bone and overall diagnostic quality of images produced. The aim of this 

study was to determine if adjacent structures with similar radiodensity and variable scan 

settings (field of view and voxel size) significantly impact the ability to accurately 

identify the tooth socket facial lamina dura, facial bone surface, facial bone margin, as 

well as the facial bone thickness measurement. Materials & Methods: CBCT scans 

(NewTom 5G) were performed on 2 fresh cadaver heads at 2 different time points, before 

(T1) and after (T2) tooth extraction, using 4 different scan settings that produced images 

in the decreasing order of clarity: 12x8 cm2 FOV at 100 µm voxel size (Group 1), 12x8 

cm2 FOV at 150 µm voxel size (Group 2), 18x16 cm2 FOV at 150 µm voxel size (Group 

3), and 18x16 cm2 FOV at 300µm voxel size (Group 4). The CBCT volumes were 

superimposed (Invivo 5.2) in pairs, before and after extraction, among the different scan 

settings (groups). Mid-sagittal images of the teeth were created and eleven total points 

along the external cortical border and facial lamina dura surface of each socket were 
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identified. Absolute discrepancies between each pair were recorded and comparisons 

made using Wilcoxon Signed Rank Tests and Friedman’s Two-Way ANOVA (α = 0.05). 

Results: Although there were statistically significant differences (p < 0.05) in group and 

time-point discrepancies in 15 of 52 comparisons evaluated, the measured differences 

were low and likely clinically negligible. Conclusions: This study, with its own 

limitations, shows that the ability to accurately outline buccal bone, irrespective of the 

presence of the tooth structure, is not clinically significantly affected by the variation in 

FOV and voxel size of the CBCT images. 
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CHAPTER ONE 

REVIEW OF THE LITERATURE 

Cone beam computed tomography (CBCT) is a relatively new imaging 

technology used to create 3-dimensional renditions of subjects.1 Following the 

commercial introduction of CBCT, unprecedented abilities to maxillofacial imaging 

emerged, immensely expanding the role of imaging within diagnostics and treatment.1 

The benefits of good image quality, volumetric analysis, short scan times, and relatively 

less radiation dose than conventional medical CT, has resulted in greater ubiquity as an 

imaging modality within all disciplines of dentistry. Many fields, including orthodontics, 

oral surgery, implant dentistry, periodontics, and endodontics find unique utility of the 3-

dimensional reconstructions provided by CBCT.3,4 It has become an important adjunct in 

orthodontic diagnosis due in part to the diverse image reconstructions available 

(cephalometrics, TMJ cross-sections, etc.), the ability to visualize bony levels, and the 

sub-millimeter accuracy enabling linear measurements.2,9  

However, CBCT is known to have shortcomings, such as capturing thin areas of 

bone.13,17,22 The accurate imaging of these fine anatomical structures is important to the 

orthodontic clinician for both initial diagnostic decisions and outcome assessment as the 

radiographic interpretation of bone levels is often used to determine periodontal health or 

externalities as the result of treatment. 3,4,19   

There are many components of CBCT image production; the various factors, such 

as the scanning unit employed, examined object, FOV, contrast resolution, and spatial 

resolution defined by the voxel size may profoundly influence the image quality 

produced for interpretation.5 It is important to understand these details in order to pursue 
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improvement in the modality on a clinical level. The immediately following paragraphs 

will elaborate on this detail to establish the foundation for discussion of the scientific 

study of these variables, and how manipulation will produce different clinical results. 

Imaging from the CBCT is accomplished via a rotating gantry, from which a 

pyramidal x-ray beam is directed through the subject onto a contralateral sensor.1 The 

gantry will rotate around the subject simultaneously collecting multiple (from 150 to 

more than 600), sequential, full-volume, planar projection (2D) images within an 

assigned field of view (FOV), each individually known as basis images.1 These basis 

images are used to mathematically reconstruct the 3-dimensional volume for viewing and 

manipulation.1  

With the collection of each individual image in CBCT geometry, the full volume 

of the subject is scanned, generating a significant amount of omnidirectional scatter that 

is ultimately recorded by the receptor.1 This reduces image contrast and increases image 

noise.9 The larger the area, or field of view, of the scan, the more scatter generated. The 

fields of view imaged by CBCT are adjustable and collimation of the x-ray beam limits 

exposure to the region of interest, allowing the operator to narrow the scope of the image 

for each individual patient and clinical need.1 Naturally, the larger fields of view are 

associated with larger amounts of exposure.8 

Contrast resolution refers to the ability of an observer to distinguish between two 

objects of different radiographic densities.12 High contrast between the margins of an 

object and surrounding structures improves the observer ability to identify those 

boundaries at the interface.9,12 Therefore, the narrow interface between tooth structure 
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and the enveloping bone, with similar radiodensities, would be more difficult to 

distinguish than that between air and bone.9,12   

Spatial resolution is the minimum distance necessary to distinguish between two 

objects.9 With CBCT-derived images, spatial resolution, and therefore detail, is primarily 

defined by individual volume elements or, voxels.1 A voxel is the 3D equivalent to the 

2D pixel, whereby a voxel is defined by its height, width, and depth.5 CBCT voxels are 

generally isotropic, meaning equal in all dimensions.5 The area detector resolution of 

CBCT units are sub-millimeter, ranging from 0.09 to 0.40mm, principally determining 

the size of the voxels.1 Reducing the voxel size during a scan will improve the resolution, 

at a cost of increased radiation exposure to the patient.9,20 Thus, the voxel dimension 

utilized is directly related to the radiation dose to which the patient is submitted during 

the scan.17  

There are numerous clinical benefits of the CBCT imaging modality. Rapid scan 

times result in fewer artifacts due to patient movement.1 Adjustable FOV adds usage 

versatility and reduces radiation to the patient.1 The images produced have sub-millimeter 

resolutions, allowing for measurement precision.1 Effective radiation dose to the patient 

(ranging from 29-477 µSv) relative to traditional medical CT (approximately 2000 µSv) 

is greatly reduced.1,21 Multiple, interactive display renditions developed for unique 

diagnostic and operative clinical needs allow prodigious clinical flexibility.1

 Current CBCT technology has limitations related to the ‘‘cone-beam’’ projection 

geometry, detector sensitivity, and contrast resolution that produce images lacking in 

maximum clarity.1 The images are subject to artifacts, noise, and poor soft tissue 

contrast.1 Study and development of the technology aims to mitigate the present 
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shortcomings, achieving images that most accurately and flawlessly represent the 

anatomical truth.     

A considerably large amount of factors are integral to the production of CBCT 

volumes.9 This intricate and multifactorial nature of CBCT image production raises many 

questions. Operationally adjustable parameters such as FOV and spatial resolution (voxel 

size) change the diagnostic outcome of CBCT generated images.5 However, the 

consequences, the magnitude of those consequences, and the appropriate clinical 

applications are all poorly understood. For medical CT examinations, settings or 

protocols for any application are well established.5 Conversely, rationales for 

standardized protocols and their impact on CBCT-based diagnosis are presently 

unavailable for dentistry.5 This is important for the clinician to judiciously utilize CBCT 

technology, adhering to the ALARA principle of maximizing clinical benefit to the 

patient and minimizing the risks inherent to ionizing radiation.6-8  

Many studies exist, employing a diverse variety of methodologies that 

demonstrate the ability of CBCT to produce accurate images. Initial reporting on 

accuracy began in 2004, with two notable publications by Kobayashi et al and Lascala et 

al.10,11 Kobayashi used cadaver mandibles and Lascala used dry skulls, each comparing 

actual measurements to those made on CBCT, concluding that it is reliable for linear 

measurements of structures closely associated with dentomaxillofacial imaging.10,11  

Studies began to manipulate scanning parameters such as FOV and voxel size, in 

order to evaluate the outcome on image quality. In early 2010, Damstra et al used dry 

mandibles embedded with glass spheres to evaluate the linear accuracy of CBCT 

generated surface models with 2 different voxel sizes (0.40mm and 0.25mm) and 
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concluded accuracy in the CBCT measurement procedure with no significant difference 

between the voxel resolutions.15 An inherent, and acknowledged, limitation in this study 

was the lack of soft tissues, resulting in increased contrast of the landmarks, influencing 

the outcome.15  

With demonstrable accuracy over long distances, investigation in the limits of 

spatial resolution emerged. Sun et al used pig specimens to measure alveolar bone height 

from CBCT generated images with varying voxel sizes.12 These authors found evidence 

that decreasing voxel size improved the accuracy of alveolar bone measurements.12 In an 

effort to most closely emulate a clinical setting, Patcas et al used intact cadaver heads and 

evaluated the ability of CBCT, with varying voxel resolutions, to detect the bony 

covering of mandibular anterior teeth.13 Differing in conclusions by Damstra regarding 

the significance of voxel resolutions, Patcas’ results, along with the earlier report by Sun 

et al,12 suggest demonstrated improvement in accuracy when decreasing the voxel size.13 

Despite that improvement however, the authors went on to discuss that differences 

between clinical and radiographic measurements can be as large as 2mm, showing that 

the average alveolar bone thickness of 1mm might be missed completely.13 Overall, this 

report concluded that CBCT is an appropriate tool for linear measurements and that the 

presence of surrounding tissue as well as different voxel size affect the precision of the 

data.13 It was acknowledged that even the most granular 0.125-mm voxel protocol does 

not depict the thin buccal alveolar bone covering reliably, resulting in a risk of 

overestimating fenestrations and dehiscences.13 This unreliability is substantiated by 

Leung et al., who found that CBCT has a high rate of false positives with 3 times the 
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number of fenestrations detected than existed in reality and a significant number of false 

negatives with more than half of real dehiscences undetected.22  

In an article recently published by Cook et al, the authors varied scanning 

parameters and measured buccal alveolar bone height and thickness on human cadavers. 

Their protocol compared images generated from a “long scan” with 619 basis images, 

360° revolution, 26.9s duration, and 0.2mm voxel size against those from a “short scan” 

with 169 basis images, 180 rotation, 4.8s duration, and 0.3mm voxel size; the 

measurements made from these scans were compared to direct caliper measurement.14 

The authors found no statistically significant differences between these parameter 

changes and concluded that the parameters resulting in a lower radiation dose to the 

patient was favorable unless the need for the higher resolution could be clearly defined.14    

Studies with variations in voxel size during analysis extend beyond the evaluation 

of bone landmarks and measurement. A systematic review conducted by Spin-Neto et al 

collated 20 different publications which qualitatively or quantitatively assessed the 

influence of voxel size on CBCT-based diagnostic outcome.5 The diagnostic tasks 

evaluated in the studies included in the review were diverse, including detection of root 

fractures, detection of external root resorption, caries detection, and accuracy bony 

measurements, among others.5 Some of the included studies demonstrated improvement 

in image quality and diagnostic accuracy, while others presented no difference.5,15,16,23-27 

Aggregately, the studies dealing with categorical data showed a tendency towards more 

accurate results associated with higher voxel resolutions.5  However, Spin-Neto 

concluded that it is not yet possible to propose general protocols for the myriad of 

diagnostic applications with CBCT.5 With the lack of unanimity, all of these 
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investigations emphasize the need for a better understanding of the factors that influence 

image resolution with current CBCT technology. 

Many authors have further discussed a concept referred to as the partial volume 

averaging effect.1,5,9,12 This effect is a cone beam related artifact in which, depending on 

the voxel size, radiopaque structures could become invisible. As defined by Scarfe and 

Farman, partial volume averaging occurs when the selected voxel resolution of the scan is 

greater than the spatial or contrast resolution of the object to be imaged.1 Meaning, the 

voxel is larger than the anatomical structure imaged and captures the image of two 

objects of different radiodensities. This voxel will then render the average density of both 

objects rather than the true density of either object.5 Selection of the smallest acquisition 

voxel can reduce the effect of this averaging.1 Known limitations in contrast resolution 

associated with CBCT units could also contribute to the invisibility of structures with 

similar radiodensities in close proximity.5,12 The deficiencies as a result of low contrast 

resolution and partial volume averaging acknowledged by many authors are important to 

understand, and are critical concepts in future CBCT research.  

Although CBCT has a relatively lower radiation dose to patients than medical CT, 

practitioners must be prudent in prescribing imaging in adherence to the ALARA 

principle (radiation dose ‘as low as reasonably achievable’). A myriad of factors 

contribute to the radiation exposure, among which are the aforementioned user adjustable 

settings of voxel size and FOV.1,8 Other factors include scan duration, milliamperage, 

kilovolt potential, filtering, patient positioning, and the sensor technology and proprietary 

algorithms used in the device itself.1 All of this makes CBCT dosimetry inherently 

difficult to summarize.8 To further obfuscate, much of the research available relies on 
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different methodologies and comparisons to draw conclusions about radiation exposure. 

DeVoss et al conducted a systematic review of CBCT in 2009 and discussed findings on 

radiation dose in the literature. These authors found inconsistencies in how CBCT device 

settings, properties, and radiation dose were reported; all contributing to reader 

confusion.28 They stated the importance of rigorous and consistent reporting on the 

different relevant parameters and acquisition protocols since device settings, image 

quality, and the resulting radiation exposure are closely related.28 In 2013, Rottke et al 

studied the effective dose (ED) span of ten different commercially available CBCT 

devices.21 Performing protocols with the lowest exposition parameters and protocols with 

the highest exposition protocols for each of the ten devices, they found a wide range of 

EDs.21 The average value for the protocols with the lowest exposition parameters was 

31.6 µSv and 209 µSv for protocols with the highest exposition parameters.21 The aim of 

that study was limited to dosimetry, so the quality of these images were not addressed.21 

However, they did acknowledge that some of the volumes could be of no diagnostic use 

due to such poor image quality.21 

The underscored principle of utilizing CBCT for diagnosis and treatment planning 

in dentistry is maximizing the clinical benefit for the patient while minimizing the risks 

of ionizing radiation. The CBCT modality offers diverse utility but should be used 

prudently with the relationship between dose and image quality carefully considered.6-8 It 

is evident that the scan parameters are significant to both of these.5,8 With all of its 

diverse uses and technical variability, dentistry has yet to develop standardized CBCT 

examination protocols.5-7 
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A more detailed understanding of the impact that differing scan settings have on 

the ability to discern fine anatomic structures will enable the practitioner to better and 

more judiciously examine patients and elevate the profession’s comprehension and 

confidence in this instrument. The objective of this research is to determine if variable 

scan settings, specifically field of view and voxel size, significantly impact the ability to 

accurately outline the buccal bone surfaces. The null hypothesis was that no differences 

would be observed. The alternative hypothesis was that the varying settings would 

significantly affect the resolution of the images produced and subsequently the diagnostic 

quality.  
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CHAPTER TWO 

THE EFFECT OF SCAN SETTINGS ON IDENTIFICATION 

OF TOOTH SOCKET LAMINA DURA: A CBCT STUDY 

 
 

Abstract 

Aim: Cone-beam computed tomography (CBCT) is becoming a common adjunct 

in orthodontic diagnosis and treatment, however several questions remain about the 

impact of surrounding anatomical structures and varying scan settings on the ability to 

delineate buccal bone and overall diagnostic quality of images produced. The aim of this 

study was to determine if adjacent structures with similar radiodensity and variable scan 

settings (field of view and voxel size) significantly impact the ability to accurately 

identify the tooth socket facial lamina dura, facial bone surface, facial bone margin, as 

well as the facial bone thickness measurement. Materials & Methods: CBCT scans 

(NewTom 5G) were performed on 2 fresh cadaver heads at 2 different time points, before 

(T1) and after (T2) tooth extraction, using 4 different scan settings that produced images 

in the decreasing order of clarity: 12x8 cm2 FOV at 100 µm voxel size (Group 1), 12x8 

cm2 FOV at 150 µm voxel size (Group 2), 18x16 cm2 FOV at 150 µm voxel size (Group 

3), and 18x16 cm2 FOV at 300µm voxel size (Group 4). The CBCT volumes were 

superimposed (Invivo 5.2) in pairs, before and after extraction, among the different scan 

settings (groups). Mid-sagittal images of the teeth were created and eleven total points 

along the external cortical border and facial lamina dura surface of each socket were 

identified. Absolute discrepancies between each pair were recorded and comparisons 

made using Wilcoxon Signed Rank Tests and Friedman’s Two-Way ANOVA (α = 0.05). 

Results: Although there were statistically significant differences (p < 0.05) in group and 
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time-point discrepancies in 15 of 52 comparisons evaluated, the measured differences 

were low and likely clinically negligible. Conclusions: This study, with its own 

limitations, shows that the ability to accurately outline buccal bone, irrespective of the 

presence of the tooth structure, is not clinically significantly affected by the variation in 

FOV and voxel size of the CBCT images. 
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Introduction 

 Cone beam Computed Tomography (CBCT) is acclaimed for its accuracy and 

diverse clinical utility.1 The benefits of good image quality, volumetric analysis, short 

scan times, and relatively less radiation dose than conventional medical CT, has resulted 

in greater ubiquity as an imaging modality within all disciplines of dentistry.1 It has 

become an important adjunct in orthodontic diagnosis due in part to the diverse image 

reconstructions available (cephalometrics, TMJ cross-sections, etc.), the ability to 

visualize bony levels, and the sub-millimeter accuracy enabling linear measurements.2 In 

particular, evaluating fine anatomical structures, like alveolar bone enveloping teeth, is 

important to the orthodontist for both initial diagnostic knowledge and outcome 

assessment.3 The ability to characterize buccal bone has clear benefits for practitioners in 

periodontics and implant dentistry as well.4    

There are many components of CBCT image production. The various factors, 

such as the scanning unit employed, examined object, FOV, and spatial resolution 

defined by the voxel size may profoundly influence the image quality produced for 

interpretation.5 However, the consequences, the magnitude of those consequences, and 

the appropriate clinical applications are not well understood.  

Moreover, the fundamental principle of utilizing CBCT for diagnosis and 

treatment planning in dentistry is to maximize the clinical benefit for the patient while 

minimizing the risks of ionizing radiation.6-8 The CBCT modality offers diverse utility 

but should be used prudently with the relationship between dose and image quality 

carefully considered.6-8 It is evident that the adjustable voxel size and FOV scanning 

parameters are significant to both of these.5,7,8 With all of its diverse uses and technical 
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variability, dentistry has yet to develop standardized CBCT examination protocols.5,6,8 

The development of these protocols would help guide practitioners when prescribing this 

modality for the wide variety of clinical applications.5  

The objective of this research is to determine if variable scan settings, specifically 

field of view and voxel size, significantly impact the ability to accurately outline the 

buccal bone surfaces. The null hypothesis was that no differences would be observed. 

The alternative hypothesis was that the varying settings would significantly affect the 

resolution of the images produced and subsequently the diagnostic quality. 

 

Materials and Methods 

 Two fresh, frozen, dentate cadaver heads were obtained from the Loma Linda 

University Bodies for Science program.  The study was filed but exempted from IRB 

approval.  The heads were first screened using the following criteria: 

1. Each head must contain as many teeth as possible, with a minimum of 10 teeth 

per jaw, which must include at least one molar bilaterally. 

2. As few metallic restorations as possible. 

3. No or minimal periodontal destruction. 

4. No visible structural damage resulting from trauma or pathology in either jaw. 

 Impressions were made of each arch using irreversible hydrocolloid impression 

material (Dust-Free Fast-Set Alginate, Dux Dental, California) and casts were fabricated 

using dental stone (Ortho Stone, Heraus-Kulzer Inc., Germany).  Block-out resin (LC 

Block-out Resin, Ultradent, Missouri) was used to eliminate undercuts on the casts. 
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A radiographic template was then constructed of 2 mm vacuum-formed plastic 

(Splint Bioacryl, Great Lakes Orthodontics, New York).  Radiopaque 2-3 mm pieces of 

18 gauge aluminum wire (Impex System Collaborators, Florida) were fixed to the 

template with a radiolucent non-filled resin (Adper Scotchbond Multi-Purpose Adhesive, 

3M ESPE, Minnesota) at the incisal tip, the free gingival margin, and the deepest edge of 

the template (Figures 1, 2).  The intent was to use the radiographic template as guide for 

image superimposition, and it was used in all CBCT scans. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  Working model with radiographic template, right oblique view.  
Aluminum markers are present at the approximate incisal tip, gingival margin, and 
deepest vestibular margin. 
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Figure 2:  Working model with radiographic template, occlusal view. Note that the 
plastic envelops the occlusal/incisal surfaces of the teeth for stability. 
 
 
 
 The scans were performed using a NewTom 5G CBCT device (QR S.r.l., Verona, 

Italy). Volumes were captured using a total of 4 different scan settings, each employing a 

distinct combination of different fields of view (FOV, cm x cm) and voxel sizes (VS, 

µm): 12x8 at 100 (Group 1), 12x8 at 150 (Group 2), 18x16 at 150 (Group 3), and 18x16 

at 300 (Group 4) (Table 1). The scans were performed using 110 kVp, with a range of 

0.64-14.87 mA (varying according to chosen setting and the size of the head), 5.4 s scan 

time for the smaller FOV, and a 3.6 s scan time for the larger FOV. Initial scans were 

performed before any alteration to the teeth or tissues (T1). 
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Table 1: Group assignments and their respective scan settings. 

 Voxel Size (µm) FOV (cm x cm) 

Group 1 (G1) 100 12 x 8 

Group 2 (G2) 150 12 x 8 

Group 3 (G3) 150 18 x 16 

Group 4 (G4) 300 18 x 16 
 

 
Single rooted teeth were selected for extraction to reduce the potential damage to 

the surrounding alveolar bone and to minimize the chance of root fracture.  First 

premolars and all existing molars were not extracted and utilized to provide support and 

stability to the template.   

Extractions were performed using a Periotome instrument (Nobel Biocare, Yorba 

Linda, California), periosteal elevators, and extraction forceps.  The supracrestal gingival 

attachment was carefully severed to preserve the gingiva.  Luxation was performed with a 

Periotome instrument followed by periosteal elevators. The luxated teeth were gently 

delivered with extraction forceps, the radiographic template was then reseated and the 

post-extraction scans taken (T2), again according to the parameters of the 4 groups.   

 Each CBCT volume was labeled according to its group and the time point it was 

taken (GxTy); for example, Group 1 at T1 is labeled as G1T1, etc. The volumes were 

superimposed three-dimensionally in pairs (according to the selected time point and scan 

parameter for comparison) using Invivo software (Anatomage, v.5.2, San Jose, 

California).  Precise superimpositions were generated manually using hard tissue 

landmarks including cortical borders, medullary trabeculation, and roots of non-extracted 

teeth (Figure 3). All superimpositions were performed by a single examiner (EC). 
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Figure 3: Example of volume superimposition. T1-T2 superimposition of the maxillary 
right central incisor, MPR with sagittal plane enlarged. Upper and lower jaws were 
independently superimposed, with bony landmarks prioritized. 
 
 

The superimposition pairs, made among the 4 different groups and 2 time points, 

are illustrated by Figure 4. Comparisons among each group and time-point are intended 

to evaluate interaction effects between these variables. This will reveal which parameter, 

FOV, VS, or both are contributory to any differences observed.  

 
 
 

 
 
 
 



www.manaraa.com

 

18 

 
 
 

 
Figure 4: The group-time-point combinations (GxTy) and the superimposition pairs (as 
denoted by the arrows) for image comparison.  
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Mid-sagittal images, along the long axis of the tooth, were produced for each 

superimposition pairing. These images were then screen captured and imported into the 

Keynote presentation program (v.6.5.3, Apple Inc., California) for analysis as performed 

in Roe et al.4 Using a slide resolution of 1024x768, the length of the Anatomage ruler (40 

mm) was sized to equate to 400 pixels on the Keynote slide, which translates to 0.1 mm 

per pixel. A representative sample of 8 created images from a single tooth, corresponding 

to each group-time-point combination (GxTy) is illustrated in Figure 5. Images of 

mandibular teeth were vertically inverted in order to preserve consistency with coordinate 

mapping between maxillary and mandibular teeth. The first paired-image was then 

rotationally oriented until the line connecting facial and lingual CEJs (CEJ Line) was 

horizontal. This angular change of the image was recorded and used to orient the 

remaining paired-images. The X-Y coordinates of the Anatomage rulers on both pair-

images should match along with the bony landmarks mentioned above, to ensure no 

positional discrepancies exist.  
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Figure 5: Images of a maxillary central incisor, representing the 8 different group-time-
point combinations. From top left to bottom right respectively: GT1T1, GT1T2, GT2T1, 
GT2T2, GT3T1, GT3T2, GT4T1, GT4T2. The images were captured at exactly the same 
sagittal slice and imported into Keynote for positioning and coordinate identification.  
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A grid was superimposed on the images with the following lines: 1) the horizontal 

CEJ Line, 2) a vertical reference line perpendicular to the CEJ line, and 3) the Level 

Lines parallel and at 3, 5, 7, 9 and 11 mm apical to the CEJ Line (Level Lines 1-5, 

respectively; Figure 6). The facial lamina dura (FLD) and facial bone surface (FBS) were 

identified with single pixel points along the corresponding Level Lines, and the facial 

bone margin (FBM) is identified with a single pixel point at the crest of the alveolus 

(Figure 6). 

 
 
Figure 6:  Constructed grid in Keynote presentation program.  The image was 
rotated to match the buccal and lingual CEJs with the horizontal CEJ Line. 
Landmark identification represented with the colored dots (enlarged for 
illustrative purposes). The examiner used these dots to plot the FLD (blue), FBS 
(red), and FBM (green).  In cases where the bone margin was >3 mm from the 
CEJ line, the X-axis points at the 3 mm mark were discarded. 
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The coordinates were recorded and the group-time-point combination 

discrepancies calculated in horizontal plane using X-axis coordinates. Facial bone 

thickness (FBT) at each Level Line is the difference between FBS and FLD X-axis 

coordinates and expressed in pixels. The facial bone margin (FBM) was also identified, 

however the discrepancies were calculated in the vertical plane using Y-axis coordinates 

(Figure 6). Discrepancies in the X-axis were given a positive value when the second 

time-point moved away from the socket, and a negative value when discrepancies moved 

toward the socket. Discrepancies in the Y-axis were given a positive value when the 

second time-point moved coronal, and a negative value when it moved apical. These 

directional discrepancies were subsequently converted to absolute values and recorded as 

absolute discrepancies. Figure 7 illustrates the landmark identification (pixel point 

placements) and visual discrepancies when superimposed. A single examiner (EC) 

performed all point placements for each tooth and group-time-point combination in 

Keynote (Figure 6-7), where pixel size remains constant at 0.1 mm. The landmark 

identifications were performed first on the images with the lower resolutions and teeth 

present, followed by plotting on each of the incrementally more resolute imagery (i.e. 

G4T1 before G4T2, followed by G3T1 before G3T2, etc.). Areas with visible damage 

after luxation/extraction were excluded from the analysis. 

During landmark identification, some coordinates were not clearly delineated and 

required a professional judgment in order to identify. These points were tabulated in 

order to evaluate the frequency distribution of this occurrence.   
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Figure 7:  Landmark identification of the representative maxillary central incisor at G4T1 
(left), G1T2 (middle), and the two pixel point grids superimposed on the G4T1 image 
(right). The pixel points above were enlarged for illustrative purposes. The discrepancies 
in coordinates can be easily visualized. The exact coordinates were recorded and 
discrepancies calculated for each image. 
 

 

Statistical Analysis 

The intra-examiner reliability of the method was determined by using double 

assessments of each parameter by examiner EC on the images produced from each GxTy 

combination from 5 randomly selected teeth made at least 2 weeks apart and expressed as 

the intraclass correlation coefficients (ICC).  Means and standard deviations of both 

directional and absolute discrepancies were calculated for each parameter.  Only absolute 

discrepancy data were analyzed statistically using Spearman’s Rank Correlation analysis, 

Wilcoxon Signed Rank, and Friedman’s Two-Way Analysis of Variance by Ranks Tests.  

The significance level of α = 0.05 was used for all statistical analyses. 
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Results 

 A total of 24 (20 maxillary and 18 mandibular) teeth and their respective sockets 

were evaluated in this study.  The tooth distribution is shown in Table 2. 

 

Table 2:  List of Extracted Teeth by Head. 

Tooth Head 1 Head 2 Total 
Mx Central 2 2 4 
Mx Lateral 2 1 3 
Mx Canine 1 2 3 
Mx 2nd Premolar 1 2 3 
Mn Central 2 0 2 
Mn Lateral 0 1 1 
Mn Canine 2 2 4 
Mn 2nd Premolar 2 2 4 
Total 12 12 24 

 

ICC values were very high for intra-examiner (r ≥ 0.993) data, indicating that the 

identification methods were reliable and reproducible.  Tables 3-6 display the means and 

standard deviations of both directional and absolute discrepancies between different 

paired GxTy combinations for FLD (Table 3), FBS (Table 4), FBT (Table 5), and FBM 

(Table 6). The means ranged from -0.11 ± 0.19 mm to 0.10 ± 0.19 mm for directional and 

0.05 ± 0.06 mm to 0.24 ± 0.24 mm for absolute discrepancies (Tables 3-6).  The 

identified coordinates between paired GxTy combinations (values not shown) were 

compared Wilcoxon Signed Rank Tests, and correlated using Spearman’s Rho at α = 

0.05.  Statistically significant differences were found for the Facial Lamina Dura (7 

pairs), Facial Bone Surface (3 pairs), and Facial Bone Thickness (5 pairs) [p < .05; Tables 
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3-5]. No significant differences were found for the Facial Bone Margin (p > .05; Table 6). 

All paired coordinates were highly correlated (r > 0.883, p < 0.001; Tables 3-6).  

 
Table 3: Directional and absolute discrepancies between paired GxTy combinations for 
the Facial Lamina Dura parameter (N=96). Pairwise comparisons made using Wilcoxon 
Signed Rank Test, and correlated using Spearman’s Rho at α = 0.05. 
!

 Paired GxTy Discrepancy  
 Mean ± SD in mm (min-max) Wilcoxon Spearman’s Rho 
 Paired GxTy Directional Δ Absolute Δ p-value r-value p-value 

G1T1 v G1T2 −0.05 ± 0.13 0.09 ± 0.11 .087 1 <.001 
(−0.5 - 0.3) (0.0 - 0.5) 

G1T1 v G2T1 0.04 ± 0.09 0.06 ± 0.07 .166 1 <.001 
(−0.1 - 0.3) (0.0 - 0.3) 

G1T1 v G3T1 0.07 ± 0.11 0.09 ± 0.09 <.001* 1 <.001 
(−0.4 - 0.3) (0.0 - 0.4) 

G1T1 v G4T1 0.10 ± 0.13 0.13 ± 0.11 <.001* 1 <.001 
(−0.2 - 0.5) (0.0 - 0.5) 

G1T2 v G2T1 −0.01 ± 0.17 0.12 ± 0.12 1 0.999 <.001 
(−0.5 - 0.5) (0.0 - 0.5) 

G1T2 v G2T2 −0.01 ± 0.08 0.05 ± 0.06 1 1 <.001 
(−0.2 - 0.3) (0.0 - 0.3) 

G1T2 v G3T1 0.04 ± 0.18 0.14 ± 0.12 .577 0.999 <.001 
(−0.5 - 0.4) (0.0 - 0.5) 

G1T2 v G3T2 0.03 ± 0.10 0.08 ± 0.07 .742 1 <.001 
(−0.2 - 0.3) (0.0 - 0.3) 

G1T2 v G4T1 0.10 ± 0.19 0.17 ± 0.13 <.001* 0.999 <.001 
(−0.5 - 0.5) (0.0 - 0.5) 

G1T2 v G4T2 0.05 ± 0.13 0.10 ± 0.10 .014* 1 <.001 
(−0.6 - 0.3) (0.0 - 0.6) 

G2T1 v G2T2 0.04 ± 0.12 0.09 ± 0.09 .003* 1 <.001 
(−0.4 - 0.4) (0.0 - 0.4) 

G3T1 v G3T2 0.04 ± 0.16 0.12 ± 0.11 .012* 0.999 <.001 
(−0.4 - 0.4) (0.0 - 0.4) 

G4T1 v G4T2 0.08 ± 0.15 0.13 ± 0.11 <0.001* 0.999 <0.001 
(−0.3 - 0.5) (0.0 - 0.5) 

*Statistically significant difference.  
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Table 4: Directional and absolute discrepancies between paired GxTy combinations for 
the Facial Bone Surface parameter (N=96). Pairwise comparisons made using Wilcoxon 
Signed Rank Test, and correlated using Spearman’s Rho at α = 0.05. 
 

 Paired GxTy Discrepancy  
 Mean ± SD in mm (min-max) Wilcoxon Spearman’s Rho 
 Paired GxTy Directional Δ Absolute Δ p-value r-value p-value 

G1T1 v G1T2 0.02 ± 0.11 0.06 ± 0.09 .645 1 <.001 
(−0.4 - 0.3) (0.0 - 0.4) 

G1T1 v G2T1 0.03 ± 0.08 0.05 ± 0.07 .338 1 <.001 
(−0.1 - 0.4) (0.0 - 0.4) 

G1T1 v G3T1 0.03 ± 0.11 0.07 ± 0.09 1 0.999 <.001 
(−0.2 - 0.4) (0.0 - 0.4) 

G1T1 v G4T1 −0.01 ± 0.16 0.10 ± 0.12 1 0.999 <.001 
(−0.6 - 0.4) (0.0 - 0.6) 

G1T2 v G2T1 0.04 ± 0.12 0.08 ± 0.09 .577 0.999 <.001 
(−0.2 - 0.4) (0.0 - 0.4) 

G1T2 v G2T2 0.00 ± 0.10 0.06 ± 0.07 1 0.999 <.001 
(−0.2 - 0.3) (0.0 - 0.3) 

G1T2 v G3T1 0.02 ± 0.13 0.10 ± 0.09 1 0.999 <.001 
(−0.3 - 0.4) (0.0 - 0.4) 

G1T2 v G3T2 0.01 ± 0.11 0.08 ± 0.07 1 1 <.001 
(−0.2 - 0.3) (0.0 - 0.3) 

G1T2 v G4T1 0.03 ± 0.17 0.13 ± 0.11 1 0.999 <.001 
(−0.4 - 0.4) (0.0 - 0.4) 

G1T2 v G4T2 0.04 ± 0.13 0.11 ± 0.09 .055 1 <.001 
(−0.3 - 0.4) (0.0 - 0.4) 

G2T1 v G2T2 0.04 ± 0.11 0.08 ± 0.08 <.001* 1 <.001 
(−0.3 - 0.4) (0.0 - 0.4) 

G3T1 v G3T2 0.05 ± 0.15 0.11 ± 0.11 <.001* 1 <.001 
(−0.7 - 0.4) (0.0 - 0.7) 

G4T1 v G4T2 0.08 ± 0.13 0.11 ± 0.11 <.001* 1 <.001 
(−0.3 - 0.5) (0.0 - 0.5) 

* Statistically significant difference.  
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Table 5: Directional and absolute discrepancies between paired GxTy combinations for 
the Facial Bone Thickness parameter (N=96). Pairwise comparisons made using 
Wilcoxon Signed Rank Test, and correlated using Spearman’s Rho at α = 0.05. 
 

 Paired GxTy Discrepancy  
 Mean ± SD in mm (min-max) Wilcoxon Spearman’s Rho 
 Paired GxTy Directional Δ Absolute Δ p-value r-value p-value 

G1T1 v G1T2 0.07 ± 0.13 0.10 ± 0.11 <.001* 0.939 <.001 
(−0.4 - 0.5) (0.0 - 0.5) 

G1T1 v G2T1 −0.01 ± 0.10 0.06 ± 0.08 1 0.968 <.001 
(−0.2 - 0.4) (0.0 - 0.4) 

G1T1 v G3T1 −0.05 ± 0.13 0.10 ± 0.09 .01* 0.949 <.001 
(−0.4 - 0.4) (0.0 - 0.4) 

G1T1 v G4T1 −0.11 ± 0.19 0.16 ± 0.15 <.001* 0.928 <.001 
(−0.8 - 0.4) (0.0 - 0.8) 

G1T2 v G2T1 0.05 ± 0.16 0.11 ± 0.13 .805 0.917 <.001 
(−0.5 - 0.6) (0.0 - 0.6) 

G1T2 v G2T2 0.01 ± 0.12 0.08 ± 0.08 1 0.946 <.001 
(−0.3 - 0.4) (0.0 - 0.4) 

G1T2 v G3T1 −0.02 ± 0.18 0.13 ± 0.12 1 0.924 <.001 
(−0.5 - 0.5) (0.0 - 0.5) 

G1T2 v G3T2 −0.02 ± 0.12 0.09 ± 0.08 1 0.946 <.001 
(−0.3 - 0.4) (0.0 - 0.4) 

G1T2 v G4T1 −0.06 ± 0.20 0.16 ± 0.14 .044* 0.917 <.001 
(−0.7 - 0.7) (0.0 - 0.7) 

G1T2 v G4T2 −0.09 ± 0.18 0.16 ± 0.12 <.001* 0.932 <.001 
(−0.5 - 0.5) (0.0 - 0.5) 

G2T1 v G2T2 0.01 ± 0.15 0.10 ± 0.10 .326 0.923 <.001 
(−0.5 - 0.4) (0.0 - 0.5) 

G3T1 v G3T2 0.01 ± 0.21 0.14 ± 0.15 .259 0.883 <.001 
(−0.9 - 0.5) (0.0 - 0.9) 

G4T1 v G4T2 −0.01 ± 0.18 0.13 ± 0.12 .797 0.940 <.001 
(−0.5 - 0.5) (0.0 - 0.5) 

* Statistically significant difference. 
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Table 6: Directional and absolute discrepancies between paired GxTy combinations for 
the Facial Bone Margin parameter (N=24). Pairwise comparisons made using Wilcoxon 
Signed Rank Test, and correlated using Spearman’s Rho at α = 0.05. 
 

 Paired GxTy Discrepancy  
 Mean ± SD in mm (min-max) Wilcoxon Spearman’s Rho 
 Paired GxTy Directional Δ Absolute Δ p-value r-value p-value 

G1T1 v G1T2 0.07 ± 0.20 0.12 ± 0.18 .122 0.999 <.001 
(−0.3 - 0.8) (0.0 - 0.8) 

G1T1 v G2T1 0.00 ± 0.13 0.08 ± 0.10 .952 0.999 <.001 
(−0.3 - 0.3) (0.0 - 0.3) 

G1T1 v G3T1 −0.06 ± 0.37 0.16 ± 0.34 .984 0.997 <.001 
(−1.7 - 0.2) (0.0 - 1.7) 

G1T1 v G4T1 −0.08 ± 0.35 0.16 ± 0.33 .490 0.996 <.001 
(−1.5 - 0.2) (0.0 - 1.5) 

G1T2 v G2T1 0.05 ± 0.14 0.12 ± 0.09 .087 0.997 <.001 
(−0.2 - 0.3) (0.0 - 0.3) 

G1T2 v G2T2 0.02 ± 0.16 0.13 ± 0.10 .624 0.997 <.001 
(−0.3 - 0.4) (0.0 - 0.4) 

G1T2 v G3T1 0.03 ± 0.28 0.18 ± 0.21 .787 0.997 <.001 
(−0.5 - 0.9) (0.0 - 0.9) 

G1T2 v G3T2 0.02 ± 0.17 0.14 ± 0.11 .535 0.997 <.001 
(−0.3 - 0.3) (0.0 - 0.3) 

G1T2 v G4T1 −0.05 ± 0.21 0.14 ± 0.17 .596 0.996 <.001 
(−0.7 - 0.2) (0.0 - 0.7) 

G1T2 v G4T2 0.05 ± 0.24 0.19 ± 0.15 .184 0.997 <.001 
(−0.6 - 0.4) (0.0 - 0.6) 

G2T1 v G2T2 0.09 ± 0.26 0.17 ± 0.21 .113 0.998 <.001 
(−0.4 - 0.8) (0.0 - 0.8) 

G3T1 v G3T2 0.04 ± 0.34 0.24 ± 0.24 .388 0.993 <.001 
(−0.8 - 0.8) (0.0 - 0.8) 

G4T1 v G4T2 0.08 ± 0.27 0.18 ± 0.22 .284 0.999 <.001 
(−0.4 - 0.8) (0.0 - 0.8) 
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Tables 7-10 depict the comparison of the absolute discrepancies (discrepancies) 

between paired GxTy combinations for all parameters using Friedman’s Two-Way 

Analysis of Variance by Ranks and Wilcoxon Signed Rank Tests with Bonferroni 

adjustment for pairwise comparisons at α = 0.05.  

Table 7 compares the absolute discrepancies between time-points among different 

groups (GxT2-GxT1). Significant differences were found in FLD and FBS (p < .05), but 

not in FBT and FBM (p > .05; Table 7).  

Table 8 compares the absolute discrepancies between post-extraction of group 1 

and pre-extraction of all groups (G1T2-GxT1). Significant differences were found in 

FLD, FBS and FBT (p < .05), but not in FBM (p > .05; Table 8).  

Table 9 compares the absolute discrepancies between pre-extraction of group 1 

and pre-extraction of all other groups (G1T1-GxT1). Significant differences were found 

in FLD, FBS and FBT (p < .05), but not in FBM (p > .05; Table 9). 

Table 10 compares the absolute discrepancies between post-extraction of group 1 

and post-extraction of all other groups (G1T2-GxT2). Significant differences were found 

in FLD, FBS and FBT (p < .05), but not in FBM (p > .05; Table 10). 

The percentage frequency distribution of coordinates that were affected by the 

reduced clarity and identified with professional judgment is illustrated in Table 11 and 

Figure 8. The percentage of affected coordinates increases as the resolution decreases. 

FLD and FBM identifications were most affected when tooth was present and absent 

respectively (Table 11 and Figure 8). 
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Table 7:  Comparison of absolute discrepancies before and after tooth extraction among different CBCT settings (Groups) using 
Friedman’s Two-Way Analysis of Variance by Ranks and Wilcoxon Signed Rank Tests with Bonferroni adjustment for pairwise 
comparison at α = 0.05. 
 

 Absolute discrepancies of paired GxT2-GxT1  
 Mean ± SD in mm  

Parameter G1T2-G1T1 G2T2-G2T1 G3T2-G3T1 G4T2-G4T1 p-value 
Facial Lamina Dura 0.09 ± 0.11a 0.09 ± 0.09a,b 0.12 ± 0.11a,b 0.13 ± 0.11b .001* 
Facial Bone Surface 0.06 ± 0.09a 0.08 ± 0.08a,b 0.11 ± 0.11b 0.11 ± 0.11b .002* 
Facial Bone Thickness 0.10 ± 0.11 0.10 ± 0.10 0.14 ± 0.15 0.13 ± 0.12 .109 
Facial Bone Margin 0.12 ± 0.18 0.17 ± 0.21 0.24 ± 0.24 0.18 ± 0.22 .087 

   *Statistically significant difference. a,bDifferent letters denote statistically significant difference. 

 

Table 8:  Comparison of absolute discrepancies from G1T2 paired with pre-extraction combinations (GxT1) using Friedman’s Two-
Way Analysis of Variance by Ranks and Wilcoxon Signed Rank Tests with Bonferroni adjustment for pairwise comparison at α = 
0.05. 
 

 Absolute discrepancies of paired G1T2-GxT1  
 Mean ± SD in mm  

Parameter G1T2-G1T1 G1T2-G2T1 G1T2-G3T1 G1T2-G4T1 p-value 
Facial Lamina Dura 0.09 ± 0.11a 0.12 ± 0.12a 0.14 ± 0.12b 0.17 ± 0.13b <.001* 
Facial Bone Surface 0.06 ± 0.09a 0.08 ± 0.09a 0.10 ± 0.09a,b 0.13 ± 0.11b <.001* 
Facial Bone Thickness 0.10 ± 0.11a 0.11 ± 0.13a 0.13 ± 0.12a,b 0.16 ± 0.14b .003* 
Facial Bone Margin 0.12 ± 0.18 0.12 ± 0.09 0.18 ± 0.21 0.14 ± 0.17 .503 

   *Statistically significant difference. a,bDifferent letters denote statistically significant difference. 
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Table 9:  Comparison of absolute discrepancies from the G1T1 combination paired with pre-extraction 
combinations (GxT1) using Friedman’s Two-Way Analysis of Variance by Ranks and Wilcoxon Signed Rank 
Tests with Bonferroni adjustment for pairwise comparison at α = 0.05. 

 
 Absolute discrepancies of paired G1T1-GxT1  
 Mean ± SD in mm  

Parameter G1T1-G2T1 G1T1-G3T1 G1T1-G4T1 p-value 
Facial Lamina Dura 0.06 ± 0.07a 0.09 ± 0.09a 0.13 ± 0.11b <.001* 
Facial Bone Surface 0.05 ± 0.07a 0.07 ± 0.09a,b 0.10 ± 0.12b .002* 
Facial Bone Thickness 0.06 ± 0.08a 0.10 ± 0.09b 0.16 ± 0.15b <.001* 
Facial Bone Margin 0.08 ± 0.10 0.16 ± 0.34 0.16 ± 0.33 .486 

*Statistically significant difference. a,bDifferent letters denote statistically significant difference. 

 

Table 10:  Comparison of absolute discrepancies from the G1T2 combination paired with post-extraction 
combinations (GxT2) using Friedman’s Two-Way Analysis of Variance by Ranks and Wilcoxon Signed Rank 
Tests with Bonferroni adjustment for pairwise comparison at α = 0.05. 

 
 Absolute discrepancies of paired G1T2-GxT2  
 Mean ± SD in mm  

Parameter G1T2-G2T2 G1T2-G3T2 G1T2-G4T2 p-value 
Facial Lamina Dura 0.05 ± 0.06a 0.08 ± 0.07a,b 0.10 ± 0.10b <.001* 
Facial Bone Surface 0.06 ± 0.07a 0.08 ± 0.07a,b 0.11 ± 0.09b <.001* 
Facial Bone Thickness 0.08 ± 0.08a 0.09 ± 0.08a 0.16 ± 0.12b <.001* 
Facial Bone Margin 0.13 ± 0.10 0.14 ± 0.11 0.19 ± 0.15 .321 

*Statistically significant difference. a,bDifferent letters denote statistically significant difference. 
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Table 11. Percentage frequency distribution of coordinates that were affected by 
reduced clarity and had to be identified with professional judgment.   
 

 Percentage frequency distribution of coordinates  
requiring professional judgment 

GxTy 
Combination FLD FBS FBM 

G1T1 14.6 0 0 
G1T2 0 0 0 
G2T1 32.3 2.1 0 
G2T2 0 0 0 
G3T1 52.1 0 8.3 
G3T2 3.1 0 0 
G4T1 76.0 9.4 37.5 
G4T2 5.2 2.1 29.2 

 
 
 

 
 
Figure 8. Percentage frequency distribution of coordinates that were affected by the 
reduced clarity and identified with professional judgment. Shades of blue represent the 
pre-extraction combinations and shades of red represent the post-extraction combinations. 
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Discussion 

Image production with CBCT is an exceptionally sophisticated process with a 

multitude of factors influencing the final outcome.9 These include, but are not limited to 

the scanning unit employed, FOV, voxel size, tissue density, and scan duration.9 The 

research demonstrating accuracy of linear measurement with CBCT is abundant.9,10-13 

Spatial resolution, when evaluating fine anatomical structures however, is not as well 

understood.5,9   

Image acquisition with detail that accurately reflects the clinical truth is important 

for practitioners to make sound diagnostic decisions and assess treatment outcomes.3,4,14 

Small anatomical structures, like the buccal bone is of particular interest.3,4,14 This study 

sought to investigate what effect changing the voxel size and FOV, both before and after 

extractions, had on the ability to interpret the outline of the buccal bone.   

Even though the results of this study were reported in both directional and 

absolute values, only absolute values were used for statistical analysis. This is because 

absolute values better reflect magnitudes of any discrepancies between paired groups, 

whereas directional data tend to mitigate them. 

Of a total of 52 coordinate discrepancies, only 15 (7 for FLD, 3 for FBS, 5 for 

FBT and none for FBM) demonstrated significant differences (Tables 3-6).  The mean 

absolute discrepancies between the coordinates that were statistically significantly 

different ranged from 0.08-0.17 mm (Tables 3-5). These discrepancies are small and 

probably clinically inconsequential. Furthermore, all paired coordinates were highly 

correlated (r ≥ .883, P < .001; Tables 3-6). These results indicate that the ability to 

identify the boundaries of the buccal bone, irrespective of the presence of the tooth, is not 
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clinically significantly affected by the variation in FOV and voxel size of the CBCT 

images.  

Beyond the direct coordinate comparison, evaluating how the coordinate 

discrepancies compared to each other had statistically significant results (Tables 7-10). 

Measuring how the magnitudes of discrepancies change with different parameter settings 

or with the presence or absence of a tooth reveals the importance of each of these 

variables. Table 7 makes discrepancy comparisons between pre- and post-extraction 

among all groups and shows the effects of tooth presence with alteration of scanning 

parameters. Table 8 makes discrepancy comparisons between G1T2 (highest resolution 

setting without a tooth present) to all groups pre-extraction, which shows how tooth 

presence and alteration of scanning parameters relate to the highest possible resolution 

imagery. Table 9 makes discrepancy comparisons among all groups with the teeth 

present, which reveals the effect from only changing scanning parameters with the teeth 

retained. Lastly, Table 10 makes discrepancy comparisons among all groups with the 

teeth extracted; this shows the effect from only changing scanning parameters without the 

potentially influential presence of the adjacent, similarly radiodense teeth.  

Discrepancies for identifying the FBM showed no statistically significant 

differences for any comparison (Tables 7-10).  For the remaining parameters (FLD, FBS, 

FBT), there is a trend evident in the discrepancy comparisons. The T1-T2 coordinate 

discrepancies between paired lower resolution images were larger in magnitude than the 

discrepancies between paired higher resolution images. For instance, looking at FBS, the 

G4T2-G4T1 discrepancy measured 0.11 ± 0.11mm, whereas the G1T2-G1T1 discrepancy 

calculated to be 0.06 ± 0.09mm (significantly different, Table 7). Additionally, the 
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coordinate discrepancies of a comparison between a higher resolution image to a lower 

resolution image are statistically significantly larger than coordinate discrepancies of a 

comparison between two higher resolution images. For example, with the FLD, the 

G1T2-G4T1 discrepancy calculated to be 0.17 ± 0.13mm, whereas the G1T2-G1T1 

discrepancy calculated to be 0.09 ± 0.11mm (significantly different, Table 8). This 

remains true with the discrepancy comparisons in Tables 9 and 10, in which discrepancy 

comparisons between groups are made with and without the presence of the teeth, 

respectively. The trend here is intuitive; that lower resolution images can lead to greater 

discrepancies in interpretation than higher resolution images. However, the magnitudes of 

these discrepancies were small enough to be determined clinically negligible.  

The results from this study corroborate the findings of several other authors.14-17 

The salient principle that can be gleaned from these investigations is that scanning 

parameters yielding lower resolution examinations maintain adequate diagnostic quality 

for identification of buccal bone during routine orthodontic evaluation.   

When plotting the coordinates, some of the points were not well delineated; as in, 

no clear outline existed between the boundary of the buccal bone and the adjacent 

structure, either air or cementum. Identifying these coordinates required a professional 

judgment, or “best educated guess”. The points where this was true were recorded and the 

frequency and proportions of these data were illustrated in Table 11 and Figure 8. The 

frequency of these unclear boundaries increases inversely with the spatial resolution of 

the image. The highest proportion of unclear coordinates involved the FLD parameter 

with the presence of adjacent teeth (T1). In the G4T1 combination, 76% of plotted points 

required an educated guess to identify. At times, the PDL would appear entirely absent, 
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and the root structure would appear to blend into the alveolar bone. Very few points with 

bone boundaries adjacent to air required any speculation. This is presumably due to the 

obviously high contrast between air and bone. When this interface was unclear, the 

boundary of the bone was often obfuscated by soft tissue. This data was collected to help 

reveal the frequency of coordinates subjectively challenging to identify and substantiate 

the subjective appraisal of improvement in the higher resolution imagery.  

Dosimetry related to CBCT is especially complicated and difficult to 

characterize.8 Image acquisition and the associated radiation exposure is a complex and 

multifactorial process.8 The many factors that contribute to the radiation exposure during 

any given CBCT include the often user adjustable settings of voxel size and FOV, scan 

duration, milliamperage, kilovolt potential, filtering, patient positioning, and the sensor 

technology and proprietary reconstruction algorithms used in the device itself.1,8 As it 

specifically relates to the parameters investigated in this study, FOV and voxel size, 

radiation exposure is directly proportional to FOV and inversely proportional to voxel 

size.8,17  

An increasingly popular method of reporting radiation dose to the patient is the 

technical quantification Dose-Area Product (DAP), represented by the unit mGy.cm2, 

providing the dose level in the beam as well as the area irradiated.18 This value is directly 

proportional to the oft-referenced and familiar effective dose with dosimetry studies. The 

NewTom 5G unit employed in this study calculates the DAP value for every examination 

performed. Table 12 outlines a representative sample of scan information from each 

parameter for one of the specimens used in this study. The DAP for the scans performed 

in this investigation appeared more dependent on the FOV than the voxel size; with 
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changes in the values only occurring to any significant degree with adjustment of the 

FOV (Table 12). With this knowledge, using the NewTom 5G, it would be advisable to 

prescribe the appropriate FOV and choose the smallest voxel size available to provide the 

highest clarity.  

 

Table 12. Scan information from each parameter acquired from a 
single specimen (representative sample) used in the study.   

 
NewTom 5G Scan Information 

FOV (cm x cm) 12x8 12x8 18x16 18x16 

Voxel Size (µm) 100 150 150 300 

Time (s) 5.4 5.4 3.6 3.6 

mAs 69.6 69.8 13.0 13.0 

DAP (mGy.cm2) 1303 1307 901 900 

 

Counter-intuitively, and contrary to the general trend,8 the DAP decreased (lower 

radiation) with increased FOV in this investigation (Table 12).  It can be speculated that 

this is due to the larger voxel size, reduced scanning duration, reduced mAs, and fewer 

basis images generated with the larger FOV. It is important to note that this outcome is 

specific to this individual unit and cannot be generalized to other CBCT instruments, as 

the image acquisition technique widely varies. 

Pauwel et al identified that with consideration for the vast variety of elements 

contributing to the dosimetry of each examination, summarizing CBCT as a single entity 

is misguided.8 Instead, the radiation dose from these devices can be viewed as a function 

of the parameters prescribed. Therefore, exposition parameters should be adjusted to 

meet the specific diagnostic needs of the patient and the clinical scenario.8 Generally 
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speaking, higher resolution images require a larger amount of radiation to the subject.6-8,14 

As noted above, the underscored principle of any radiographic study is maximizing the 

clinical benefit for the patient while minimizing the risks of ionizing radiation. Especially 

regarding CBCT, with such a dramatic range of exposition, the value of higher resolution 

and clarity of an image must be judiciously balanced with that of radiation dose.7,8   

The results from this study favor the use of parameters that mitigate the radiation 

exposure to the patient. The magnitudes of the differences in the ability to identify 

boundaries of fine anatomical structures, like the buccal bone, between high resolution 

and low resolution scans, as revealed in this data, do not justify the additional ionizing 

radiation for normal orthodontic purposes.  

    

Conclusions 

Higher CBCT image resolution usually incurs higher effective radiation doses. 

This study, with its own limitations, shows that the ability to accurately discern the 

boundaries of the facial bone enveloping a tooth, irrespective of the presence of the tooth 

structure, is not clinically significantly affected by the variation in FOV and voxel size of 

the CBCT images.  For each CBCT machine utilized, clinicians should be aware of the 

settings that produce acceptable image clarity in the area of interest with the lowest 

effective dose and utilize them accordingly.  
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